“Some trees are being genetically engineered to contain the Bt toxin,” notes Anne Peterman of Stop GE Trees. “This could be a tremendous threat to forest ecosystem soils, in which beneficial fungi are a key component of the forest ecosystem.”
The feds have allowed seven southeastern states to plant GM forests. See Alien Forest, Alien Ocean, Alien Sky; and watch the award-winning documentary, “A Silent Forest: The Growing Threat, Genetically Engineered Trees” (2005, 46 mins) which details the appalling effects allowed by the Monsanto-owned federal government. (You can buy the full length film at Amazon.)
[pro_ad_display_adzone id=”110028″]
By Ryan Villarreal
International Business Times
Bioengineering agricultural giant Monsanto has touted the safety of genetically modified crops, but a new study has found that insecticide-containing corn can be harmful to the overall health of soil ecosystems.
Genetically modified corn has been linked to a decrease in a subterranean fungus that forms a symbiotic bond with plant roots, allowing them to draw in more nutrients and water from the surrounding soil in exchange for carbon.
Researchers at Portland State University conducted a study to examine the effects of corn genetically engineered with the bacteria-derived insecticidal toxin, Bacillus thuringiensis, or Bt, on growth of arbuscular mycorrhizal fungi (AMF).
AMF is important for the overall health and fertility of soil ecosystems, and was found to form less bonds with the roots of Bt corn than with non-Bt corn.
“Because these fungi rely on a plant host for nutrition and reproduction, they may be sensitive to genetic changes within a plant, such as insect-resistant Bt corn,” Tanya Cheeke, a PhD student in biology at Portland State, told the American Journal of Botany.
Cheeke conducted the study as part of her doctoral research into the impact of genetically modified crops on soil ecosystems.
“What makes our study unique is that we evaluated AMF colonization in 14 different lines of Bt and non-Bt corn under consistent experimental conditions in a greenhouse using locally collected agricultural field soil as the AMF inoculum,” Cheeke told AJB.
Cheeke planted corn seeds containing the Bt gene and without it into soil containing AMF to simulate agricultural conditions on modern industrial farms.
Cheeke also tested AMF growth with other crops in soil formerly planted with both Bt and non-Bt corn. With soybeans planted in both soils, AMF root bonding was not harmed, leading Cheeke to conclude that the Bt gene was not directly toxic to AMF, but that its only known damage is to root bonding with Bt corn.
According to Cheeke, in 2011, 88 percent of corn cultivated in the U.S. was genetically modified with insecticides like Bt.
Full Press Release American Journal of Botany:
Genetically modified corn affects its symbiotic relationship with non-target soil organisms
Experimental evidence reveals a reduction in arbuscular mycorrhizal fungal colonization of Bt corn
An increasing number of crops commercially grown today are genetically modified (GM) to resist insect pests and/or tolerate herbicides. Although Bt corn is one of the most commonly grown GM crops in the United States, little is known about its effects on the long-term health of soils. Although there are many benefits to using biotechnology in agriculture, such as potentially reducing insecticide use, there may be unintended side effects as well—does GM corn impact non-target soil organisms, such as arbuscular mycorrhizal fungi, or affect plants subsequently grown in the same field?
Bt corn is genetically engineered to express insecticidal toxins derived from a soil bacterium, Bacillus thuringiensis, to protect it against common agricultural pests such as the corn root worm and European corn borer. Tanya Cheeke and her colleagues (at Portland State University, Oregon) were interested in determining whether the cultivation of Bt corn has a negative effect on arbuscular mycorrhizal fungal colonization of Bt corn or of crops subsequently planted in the same soil. They published their findings in a recent issue of the American Journal of Botany https://web.archive.org/web/20170915023216/http://www.amjbot.org:80/content/99/4/700.full.
Arbuscular mycorrhizal fungi (AMF) are ubiquitous microscopic soil fungi that form symbiotic relationships with the roots of most plants. Plants supply the fungi with carbon, and the fungi increase the host plant’s ability to uptake nutrients and water from the surrounding soil.
“Because these fungi rely on a plant host for nutrition and reproduction, they may be sensitive to genetic changes within a plant, such as insect-resistant Bt corn,” stated Cheeke.
By experimentally planting seeds from several different lines of both Bt corn and non-Bt corn, and using local agricultural soil containing native mycorrhizal fungi, the authors were able to simulate what might happen naturally in an agricultural system.
“What makes our study unique is that we evaluated AMF colonization in 14 different lines of Bt and non-Bt corn under consistent experimental conditions in a greenhouse using locally collected agricultural field soil as the AMF inoculum,” said Cheeke.
“The use of whole soil in this study allowed each Bt and non-Bt corn line to interact with a community of soil organisms, making this study more ecologically relevant than other greenhouse studies that use a single species of AMF,” she adds.
Interestingly, the authors found that colonization of plant roots by symbiotic soil fungi was lower in the genetically modified Bt corn than in the control lines. However, there was no difference in root biomass or shoot biomass between the two types of corn at the time of harvest.
Cheeke and co-authors also determined that the Bt-protein itself is not directly toxic to the fungi since AMF colonization of vegetable soybeans did not differ for those grown in soil previously containing Bt vs. non-Bt corn.
Together these findings contribute to the growing body of knowledge examining the unanticipated effects of Bt crop cultivation on non-target soil organisms. Examining non-target effects of genetically engineered crops on symbiotic soil organisms becomes even more important as acreage devoted to the cultivation of Bt crops continues to increase globally.
“In 2011, 88% of the corn cultivated in the United States was genetically modified to express insect resistance, herbicide tolerance, or some combination of stacked traits,” Cheeke commented. “Globally, genetically modified corn is cultivated in at least 16 different countries.”
Cheeke notes that the next step is to understand the ecological significance of this study. “In greenhouse studies Bt corn had lower levels AMF colonization, so now it is important to see if this pattern is also observed under field conditions.” She plans to use field experiments to test if planting a Bt crop for multiple years has an effect on the abundance or diversity of AMF in the soil ecosystem.
The full article is available for no charge until May 17, 2012 at www.amjbot.org/content/99/4/700.full. After this date, reporters may contact Richard Hund at [email protected] for a copy of the article.
[pro_ad_display_adzone id=”110027″]